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Lecture 05:
Quantization Strategies for
Efficient DNN Implementation



Notes

Please send email to efficientaiaccelerator@gmail.com
Lab1 has been released.

Start considering the project topic, teaming.

In-course quiz today, covering materials of DNN pruning.
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Recap

e \Why pruning?
o Reduce running cost
o Reduce storage
e General pruning techniques
e Transformer pruning
e Large model pruning
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Topics

e Basic Data Formats

@)
@)
@)

Fixed point (INT)
Floating point (FP)
Block floating point (BFP)

e Quantization methods
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Fixed-Point Arithmetic (INT)

Fixed Point Formats
320 76 0
4-bit Fixed 8-bit Fixed

Point (INT4) Point (INT8)
e=0, m=3 e=0, m=7

e Hyperparameter associated with the fixed-point format:
o Clipping range (-L, L): usually symmetrical around 0
o Bitwidth (b)
e Quantization with Fixed-point format is called Fixed point quantization or
INT quantization.
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Fixed-Point Format (Symmetrical)

e How to convert a number x to INT representation?

O O O O O

Set the clipping range: (-L, L), bitwidth: b

Compute the scale: s = 2L /(2" — 2)

Clip the input x: z. = Clip(x, L, —L)

Calculate the INT representation: x;,,; = round(z./s)
Rescale: Ty = STint

Q(x)A

i

e Have a uniform representation power within the clipping range.
e All the computations can be performed using Z;,;
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Fixed-Point Format (Symmetrical)

e Have a uniform representation power within the clipping range.
e All the computations can be performed using x;,;

-L 0 L -L 0 L
s=2L/(2°-2) s=2L/(2°-1)
e With s=2L/(2°-2), zero can be represented using quantized number

Q(x)A Q(x) A

| > >
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Example

e X=[1.1,24,-0.3,0.8], bitwidth=3,L=2

e How to convert a number x to INT representation?

Set the clipping range: (-L, L), bitwidth: b b=3, L=2

Compute the scale: s = 2L /(2" —2) s=4/6=2/3

Clip the input x: z. = Clip(z,L,—L) xc=[1.1,2,-0.3,0.8]

Calculate the INT representation: z;,,; = round(z./s) xint = [2, 3, 0, 1]
Rescale: Ty = STipt Xq=[1.33, 2.0, 0.0, 0.67]

O O O O O
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Computation with Fixed-Point Format

e Addition/Subtraction: , + ¥y, = $(Tint £ Yint)
e Multiplication: T4 X Y4 = sz(mmt X yz’nt)

If the scales are the same

B St e
Vo1 Xat Y2 X2 yi X Yo Xo tf gsntz Gate P His
Cnl | L | | i ! c | | c - Cary TR
1 T -@/@/@/@/@/@/M )
4 s s e s e o
. . P e e e e e
Fixed-point adder 1_g§ H% @ {? ;T% J% @ l
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Computation with Fixed-Point Format

e Addition/Subtraction: Hard to compute

e Multiplication: 4 X Yg = Sz8y(Tint X Yint)
e Division: z,/y, = (82/8y) X

Fixed-point adder

If the scales are not the
(xint/yint) same

M Half Adder N A8 e M N e JE Y
[ Full Adder A

0 AND Gate
+ Sum

«- Carry

r%?%@@@?@l

Fixed-point multlpller
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Computation with Fixed-Point Format

e If we try to compute the dot product between X and Y:

Xg1 Xag2| 8

Ya.2

ya.1| All elements within the tensors are quantized using the same
scale, but the scale across the tensors can be different

Lg1 X Yg1 1 Lg2 X Yg2 = sxsy(wint,l X Yint,1 g Tint,2 X yint,2)

X, Y

Xint, Yint

Zint

paziuenb
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paziuenb

X, Y —

OVIN d4

12



Computation with Fixed-Point Format

e INT can be applied to a block of numbers, with the block size defined in a
customizable manner.

1] 2 11 | 24 11 | 24 11 | 24
10 | 11 10.5 | 11.8 105 | 11.8 105 | 11.8
Per tensor Row-wise Column-wise

quantization quantization quantization

(low error) (high error)

e However, a higher quantization granularity will also incur a conversion overhead.

NYU SAI LAB
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Computation with Fixed-Point Format

1 1' Binary quantization Ternary quantization

|1 |
-1 0 1

e Binary and Ternary neural networks are both multiplication-free DNN.
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Fixed Point Format (Unsymmetrical)

e How to convert a number to INT8 representation?

Set the clipping range: (Lmin, Lmax), bitwidth: b
Compute the scale: s = (L0 — Limin)/(2° — 1)
Clip the input x: z. = Clip(z, L1in, Limaz)
Calculate the fixed-point representation:

Tint = round((z. — Lmin)/$)

o Rescale: z, = szt + Lmin

O O O O

| | | |
Lmin L max

NYU SAI LAB




Example

e X=[11,24,-0.3,0.8], bitwidth=3,L =2

e How to convert a number to INT8 representation?

Set the clipping range: (Lmin, Lmax), bitwidth: b  b=3, Lmax=2, Lmin=-0.5
Compute the scale: s = (Liaz — mm)/(zb —1) s=0.357

Clip the input x: . = Clip(x, Lyin, Limaz) Xc =[1.1, 2, -0.3, 0.8]
Calculate the fixed-point representation:

Tint = round((x. — Lmin)/s) Xint=1[4,7,1,4]

o Rescale: ¢, = 8Zijnt + Lmin ~ Xq =1[0.93, 2.0, -0.14, 0.93]

O O O O
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Computation with Fixed-Point Format

e Addition/Subtraction:
Lq + Yqg = S(wint + yint) + 2me Lg — Yqg = 3($int — yint)
e Multiplication (needs additional computation):

Lg X Yq :smsy(xint X yint) + Lmin,:cyqsy + Lmin,yqux + Lmin,mein,y

e Division: hard to implement

NYU SAI LAB
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Floating-Point Arithmetic

IEEE 754 3439 22 e
32-bit (FP32)
e=8, m=23
ESign field [JExponent (e)

1514 9

IEEE 754

16-bit (FP16)
e=5, m=10

[ 1Mantissa (m)

e The floating-point number has three fields:

o  Sign (s)
o Exponent (e)
o Mantissa (m)

NYU SAI LAB
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Floating-Point Arithmetic

sign exponent (8 bits) fraction (23 bits)
| | Il |

ofo]1]1f1]1]1lo[olo]1|o{o]o]olo|o]olofo]o]olofo]o]lolofo]olofolo] = 0.15625
31 30 2322 (bit index) 0

e Every real number can be converted in the following format:

e (—1)5 w 9e—bias o (1 + m) There typically exists a predefined
bias: bias = 127 for IEEE 754 FP32.
m = (O.bgblbz. .o bzz)z

e Forexample:
0 5.5=(-1)°x 2129127 x (1.011). s =0, e =10000001, m =0110000...0

o -71=(-1)"x 213127  (1.000111). s =1, e = 10000101, m = 0001110...0
o 0.34375=(-1)° x 2125127 x (1.011). s =0, e = 01111101, m = 0110000...0

NYU SAI LAB Overton, Michael L. "Floating point representation.” Unpublished note (1996). 19




Floating-Point Arithmetic

sign exponent (8 bits) fraction (23 bits)
| Il |

olof1]1]1]1|1|o[ofo]1]ololofolo]o]o]ololofofo]o]o]ololofolo]o]o] = 0.15625
31 30 2322 (bit index) 0

e |EEE-754 standard:
r = (—1)° x 2¢7%95 % (14 m)
m = (O.boblbz. .o bzz)z

e The exponent field is unsigned.
e We need some special representation:

O

A bit stream of all zeros represents O

NYU SAI LAB
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Floating Point Arithmetic

IIII
...... 0 1

I
I
2 3

A

e Have better representation power for values with small magnitudes.
e How to convert a real number x to FP representation?

X =|[x| s =sign(x)
. T
a = |logax| e = a -+ bias mZF—l
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Example

X =-13.24, bias=127
X =|x| s =sign(x)
_ T
a = [logaz| e = a+ bias ng—l
a=3,e=130,m=0.655
s =(1)2, e =(10000010)2, m=(10100111101011100001000)2

NYU SAI LAB
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Difference in Representation Power Between
INT and FP

e FP provides relative precision that scales with magnitude. Small numbers
near zero have finer granularity, while very large numbers have coarser

steps.
o For FP, the as the magnitude getting larger, the granularity will also
decrease. Under the fixed exponent, mantissa
o fills the gap evenly

= (—1)° x R0 x (1 4+ m)

As exponent increase, the granularity will
decrease exponentially

e INT provides uniform precision. Each step between representable values is
exactly the same.

NYU SAI LAB
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Computation with FP Representation

e Addition/Subtraction:
o Need to align the exponent

011010 + 001111 = 011010 + 011011 = 011101
e e .
Sie1mi  S2€2 M2 Alignment
e Multiplication/Subtraction:
o Sum the exponent, multiply the mantissa
011010 ® 001111 e =ertez
L'SjLéﬁn'f Lg;';?rﬁz 1+m = normalizer(1.m1 X
1.m2)
e Addition and subtraction is expensive for FP.

NYU SAI LAB

Mantissa 1 Mantissa 2

Exponent | Exponent 2

Signl Sign2

'

+ ]+

Calcuation
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Customized FP Representation

15 14-7 6-0 18 17-10 9-0
bfloat16 TensorFloat
e=8, m=7 e=8, m=10
1514-10 9-0 76-32-0 76-21-0
IEEE 754 HEPS8
16-bit (FP16) JRE e=4 m=3 =5 m=2
’ 3 32-10
NVFP4
e=2, m=1

e Numerous customized FP representations have been developed to facilitate
DNN execution.

e FP can be applied to a block of numbers, with the block size defined in a
customizable manner.

NYU SAI LAB
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Block Floating Point (BFP)

6 5-0 32-0
2acs imimimlis

20 >0 = OO L

MSsFP-12 [ ]

g=2, e=4, m=4 g=4, e=4, m=6 g=16, e=8, m=3

ESign field [JExponent (e) [JMantissa (m)

e BFP formats offer a middle ground between FP and INT formats, by enforcing that a group of
values share a common exponent while maintaining individual mantissas.

NYU SAI LAB -




Block-Floating Arithmetics (BFP)

0/ 11110 0|11 110 0| 110 [ Sign
I:> IZ> 11 [] Group exponent
O|01] 111 Q|11 | 00T O|001 [] Mantissa

e Block floating point (BFP) is a numerical representation method that applies a shared exponent
to a block of fixed-point values, balancing precision and dynamic range while reducing
computational complexity compared to full floating-point arithmetic.

e Thereis no “leading 1”.

= (—1)% x 2577 x (1 + m) = (—1)% x 2679 x m
m = (0.bgb1bs. .. b22)2 m = (bo.b1b2bs...b22)2
FP BFP

NYU SAI LAB .




Block-Floating Arithmetics (BFP)

O

11

110

O

Ol

111

O|11 | 110

= =

0|11 001

11

O

110

O

001

] Sign
[[] Group exponent
[] Mantissa

Inner-group operations are performed using fixed-point arithmetic.
Cross-group operations are performed using floating-point arithmetic.
Each group exponent also includes a bias, which is shared across all the groups.

NYU SAI LAB

€T =
m =

(—1)* x 2°77% x (1 +m)
(O.boblbz. .o b22)2

FP

T
m

(_1)3 > 2e—bz'a,s < m
= (bo.b1b2bs...b22)2

BFP
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Example

Find the
5.5 Find the group ) Converting to (-1)°x22x(1 .0110),
2.625 max value exponential (1-375%2°) . (-1)°%x2"%(1.0101),
-3.125 ' | 2 (-1)1x21x(1.1001),
2.75 (-1)°x2"%(1.0110),
010110 BFP (-1)°x22x(1.0110), Shift on
001010 <Representation (_1)0><22><(()_1010)2 significands
10 | FoT00 (-1)'x22%(0.1100),
Ol0TOT] (-1)0><22><(0.1011)2
] Sign
Assume the bias is 0 [] Group exponent
NYU SAI LAB [] Mantissa
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Logarithm Arithmetics

e A specialized form of integer (INT) quantization
e Ultilizes only power-of-two integer values, making hardware multiplication

more efficient and cost-effective.

| | 1 L |
-8 -4 -2 -1 1 2 4 8
11 10 Ho1 Heo @oo o1 P10 811

a=(1100)2 ax2=(11000)2

NYU SAI LAB

e Each INT number can be represented

by its exponent = log(INT).

e A total of 8 numbers, 3 bits are needed

to encode the bits.

ax8 = (1100000)2

30



Topics

e Basic Data Formats

(@)
(@)
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Fixed point (INT)
Floating point (FP)
Block floating point (BFP)

e Quantization methods
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Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives:
Weight quantization, activation quantization

Quantization aware training, post training quantization

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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Weight Quantization

Frequency

10"

10" 4 | |l

04 [-03' -0.2

Weights Value

Weight distribution in ResNet

NYU SAI LAB

0.4

The weight distribution follows a
gaussian-like distribution.

The outlier will lead to large quantization
error.

A good selection on the clip range L is
critical for accuracy performance.

33



Weight Quantization

Frequency

e Large truncation error
e Low quantization error for small values °

0.1

NYU SAI LAB

L

10%

g

2

c?3-10'

&)

ool |l 1L

0.1 04 -03 -02 -01 01 02 03 04

Weights Value

Weights Value

e Small truncation error
Large quantization error for small values

L = 0.9xmax(]W|), L = 0.95xmax(|W|), 0.9 and 0.95 are
chosen by experience.
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Activation Quantization

e Quantization on activation needs to be performed dynamically. This will introduce
additional compute overhead.

e Also the activation will pass the nonlinear functions, which are usually very
sensitive to quantization error, so dequantization is required to convert back to FP

16/32.
___|FP2] | INT | |INT2| | Batch | | Rel Ul FP2 | | INT
INT Conv FP Norm INT Conv
\ J
Y
Layer |
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Activation Quantization

0.2

(577)( 1 024))( 0.1 0.078
(1024 x1024) I
Projection Layer: =

Input: 577x1024
Weight: 4096x1024

e For low-precision quantization, the
quantization process may cause more
computation than the computational savings
achieved by using low-precision quantization.

NYU SAI LAB

0.052

FP16

On 4090 GPU g potMul

0 O O O O

0.187
0.132 0.136 ‘

<

Y '

Set the clipping range: (-L, L), bit width: b

Compute the scale:s = 2L /(2" — 2)

Clip the input x: . = Clip(z,L,—L)

Calculate the INT representation: Z;,,; = round(x./s)
Rescale: Tq = STint

FP8 FP8 w/o scale INT4

Il Cal_scale
Dequantize W Quant

36



Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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When to Quantize?

Post-training quantization (PTQ) Quantization-aware Training (QAT)
L
| [ Quantize the |
Train "‘."t.h full weight/activation .
| precision | \ " Until
) [ R ( Y . convergence
Quantize the Train the
weights ) | current model

!

e PTQ has lower computational cost, but accuracy is also lower.
e For the model which is expensive to train (LLM), PTQ is applied to facilitate their
implementations.

Resultant model
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Another Way to Look at Quantization

W

\
/

Original flow

®)—

Flow with quantization

a

-

Y = WA, Z = ReLU(Y)
8L 0L 8Z dY

oW  8Z oY oW

NYU SAI LAB

W’

A

N\
/

%)=

-

oL 0L dZ Y oW’

OW  0Z Y W' OW

How to compute

ow'’ 2
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Straight Through Estimator (STE)

NYU SAI LAB

2

1

0

g
(357

Sign(x)

0
[

6Sigﬁ(x)

-1

ox

0
(a)

1

2

Staircase function has a derivative of 0 at most of the
values. This will makes the DNN not trainable.

We instead use STE to estimate the gradient of a
non-differentiable quantized function in the backward
pass.

oW’

=1
ow

During the forward pass, apply quantization,
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems

30 (2017).
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Straight Through Estimator (STE)

A

Forward pass

wHOHw

\x
Qr—

—

— (oLl

Backward pass

N

-—

B

-

e During the forward pass, apply quantization, for backprop, ignore it.
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Other Ways to Approximate Quantization

NYU SAI LAB

Sign(x) Clip(—1,x,1) ApproxSign(x) 3-order-ApproxSign(x)

| — LA LA

0
P aSign(x) dClip(-1,x,1) dApproxSign(x) 03-order-ApproxSign(x)
ox ox ax 0x
-2
-2 -1 0 | 2 -2 -1 0 1 2 -2 -1 0 1 2 2 -1 0 1 2
(a) (b) (c) (d)

Liu, Zechun, et al. "Bi-real net: Binarizing deep network towards real-network performance." International Journal of
Computer Vision 128 (2020): 202-219.
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Pytorch Implementation of Quantization

def forward(self, x): def forward(self, x, b, L):
y = F.convZ2d(self.w, Xx) self.quantized w = Q(self.w, b, L)
return y y = F.conv2d(self.quantized w, Xx)

return y
def Q(w, b, L):
L =0.9 * w.abs () .max ()
w = torch.clip(w, min=-L, max=L)
scale = 2L/ (2**b-2)
wg = (w/scale) .round() * scale

return wqg

NYU SAI LAB @




Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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Granularity of Quantization

e The weight can be quantized with different granularity:
o Tensor-based quantization
o Vector-based quantization
o  Group-based quantization
e A higher quantization granularity will lead to a lower quantization error and a

higher hardware implementation cost.

1
Tensor-based Vector-based Group-based
quantization quantization quantization

NYU SAI LAB
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Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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Quantization During Training

X: input W: weight filters Y: output

e The forward propagation is very similar to the inference operation, where the input X is
multiplied by weight W, generating the output Y.

NYU SAI LAB
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Quantization During Training

Data gradient Weight gradient
Computation Computation
vy | X| W' | = |yx XT | X|VY|=|VYW

X: input W: weight filters Y: output

VX: input gradient ~ VW: weight gradient VY. output gradient

NYU SAI LAB
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Quantization During Training

(o

VY |7

Data Gradient
Computation

Q(vY)

NYU SAI LAB

vX

o

=

Qf.)

WT

Weight Gradient
Computation

VW

%Q(VY)

Q()

vY

Gradient is much more sensitive to quantization error.
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DNN Gradient Distribution

e DNN gradient is much hard to quantize and very sensitive to quantization error.

NYU SAI LAB

(a) (b)

0 0.001 0002 0003  273° 2725 2-20 o-15 2710 55
Neural gradients Log (neural gradients)

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint
arXiv:2006.08173 (2020).
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Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB

51



Deterministic and Stochastic Quantization

e To quantize a, conventional linear quantization will make
g(a) = 0. However, this will cause a bias.

5 $ 1' e With stochastic quantization:
a=0.2 _J1 forp=0.2
q(a) = {O forp = 0.8

e For QAT, the bias will not cause any problem, due to the existence of bias in BN.
e Stochastic quantization is extremely useful when applying quantization to accelerate DNN
training.

NYU SAI LAB -




Deterministic and Stochastic Quantization

Input Feature
maps

.
-
.

NYU SAI LAB

Filters

C o"
R
S ..
*

.
.
-

M filters

[ FP weights

Input Feature

Quantized Filters

C 0..
maps [
c. Rl -
[ S ..
* T
W
M filters

Quantized weights

—_—>

Output Feature

.
.
-

maps

E
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Quantization During Training

Data Gradient Weight Gradient
Computation Computation
%Q(WT) %Q(VY)
SQ(.) SQ(.)
W vy

NYU SAI LAB




Clustering-Based Quantization

Clustering-Based Quantization

o . Center of
Full-Precision Weights Cluster Indexes Clusters

‘ 1.01 | €
1

Quantization and clustering share
similarities. In clustering, each value is
assigned to a centroid, while in
quantization, each full-precision value
is mapped to one of the predefined
quantization levels.

Clustering is usually used to compress
the weight matrix and efficient storage,
but it is hard for accelerating
computations.

However, due to the flexibility of
selecting the centroid, clustering
usually achieves a better accuracy.
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Topics

e Basic Data Formats

@)
@)
@)

Fixed point (INT)
Floating point (FP)
Block floating point (BFP)

e Quantization methods
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Learnable Quantization

e Multiple methods have been proposed to learn the quantization
hyperparameters:
o PACT
o QIL
o Quantization network

NYU SAI LAB




Learnable Quantization

e How to convert a number to INT8 representation?

O O O O

NYU SAI LAB

Set the clipping range: (-Lmin, Lmax), bitwidth: b
Compute the scale: s = (Lmee — Limin)/(2° — 1)
Clip the input x: z. = Clip(z, L1in, Limaz)
Calculate the fixed-point representation:

Tint = round((z. — Lmin)/$)

Rescale: z, = szint + Limin
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Learnable Quantization

e How to convert a number to INT8 representation?
o Set the clipping range: (-, 1), bitwidth: b
o Compute the scale: s = (21)/(2°-1)
o Clip the input x: Xc = Clip(x, [, -I)
o Calculate the fixed-point representation:
Xint = round(Xc/s)
o Rescale: Xq = sXint

S
L]

Frequency

S

10" | 1l
04 [-03' -0.2

0. 102 03 |04
Weighz:Valos | = 0.9xmax(|W|), | = 0.95xmax(|W|)
Weight distribution in ResNet Can learn by learnt during training?

NYU SAI LAB -




Learnable Quantization

Frequency

10° I

04 [-03' -0.2

Weights Value

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085
(2018).

First we need to apply CLIP function to
the input x, where the clip function has a

range of (-, I).

ls ifex > 1
z. = Clip(x,l) = {w, —I<z<l
—Il, =<l
T
T, =round(—) X s

S
dL  dL dzq dx. _ dL dz.
dl ~ dx, dx. dl ~ dz, d

Can we learn 1?
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Learnable Quantization

LW [ xOall dL _ dL dW/ dw,

: dl T AW g, di
BN 1
o

P OSSR
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Learnable Quantization

Frequency

10"

]0[) 1

0.4 |-0.

NYU SAI LAB

9 ]

Weights Value

L,

Clip(z,l) = {a:
dClip(z,l)
dx B
dClip(z,1)
dl B

ife >1
, =I<z<l
—Il, =<l
(0, ifz>1
1, —-I<x<
0, =<1
(1, ifz>1 L can be
10, —I<z<1! |egmable
-1, z<1

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint

arXiv:1805.06085 (2018).
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Learnable Quantization

RPN s | d s d d - d dy.
%, |w| <—A><—A> [w] <—W><—W> [w] 4—W><—W>
A A A
1 1 1
1/qa 1/qw 1/qw -
s 17

th} th§

(a) No Quantization (b) T=1 (c) T=11 (d) T=121 (e) Complete Quantization

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings

NYU S AI L AB of the IEEE/CVF conference on computer vision and pattern recognition. 2019. .

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2019.



Problem of Quantization

e The major drawback of quantization is that it does not consider the
impact of the input when making the quantization decision.

10|0.1|8 [03[4 | 2 |0.2| 3 |0.4(6.5 10|0.1|8 [03|4 | 2 |0.2] 3 [0.4/6.5

ol Quantization o
01| 3 |02] 1 [04|02]|-1 |3 04|06l ———> |0 |3 |0 |1 |0 |O |13 |0
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Problem of Quantization

e \WNe use a calibration dataset and

profile some data xi, yl across each
Xl Layer | yi layer.
e After that, we use these data to train

the optimal quantized weights.

n%}n 1Y: — XiQ(W)||? For each |
l

NYU SAI LAB .




Quantization Interval Learning (QIL)

c-L c+L
10° 1 10°
& &
: 5
= =
g S
& 10 £ 10
10" | 04 | IIIJ ! nl{ 1
04 [-03" , 1 02 03 |04 04 {03 -02 -01 0 01 02 03 0.4
Weights Value Weights Value
|f\//_\4—\1
0 t 0.5 1
w=0.2
Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 66

of the IEEE/CVF conference on computer vision and pattern recognition. 2019.



Quantization Interval Learning (QIL)

e To achieve this rounding flexibility, we combine a
learnable function with quantization.

wq = Q(F(w))

wg = Q(w)

NYU SAI LAB

e [(.)is a function which contains learnable
hyperparameters.

0 lw| < ew — dw
w = sign(w) w| > ew + dw
(aw|w| + Bw)? - sign(w) otherwise,

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
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Quantization Interval Learning (QIL)

e QIL offers flexibility to round the FP weights.

0.5 1 T T L :
1 B oE 1 Mapping
w=0.2 1 !
w=0.2 v=0.8
0 |'w| < cw —dw %
w = sign(w) |lw| > ew + dw _
(aw|w|+ Bw)” - sign(w) otherwise, d 0' 5 0/—\ ‘ll Quantize
Mapping function contains some learnable parameters ,;,:T 0.8

e wq = Q(F(w)) are stored for inference after the training process finished.
e We can not apply this techniques over the activation, due to its large computational overhead.

NYU SAI LAB Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 8

of the IEEE/CVF conference on computer vision and pattern recognition. 2019.




Quantization Networks

e We propose a novel perspective of interpreting and implementing neural network quantization by
formulating low-bit quantization as a differentiable non-linear function.

(a) No Quantization (b) T=1 (c) T=11 (d) T=121 (e) Complete Quantization

n

y = af
i=1

Alz)=

NYU SAI LAB

siA(Bx — b;) — o)

e n + 1isthe number of quantization intervals
e [3is the scale factor of inputs

1 >0, e siand bi are the scales and biases for the unit step functions

0 @1
Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019. 69

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." Proceedings of the
IEEE/CVF international conference on computer vision. 2019.



Quantization Networks

a : 1
A(z) = { : , = 0; o(T%) = 1+ exp(—Tx)

e We can replace the staircase
function with a sigmoid function.

(T11 I Y ———— e \We can progressively increases T
T #0 %i/ during the training process.
/

70
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Topics

e Basic Data Formats

@)
@)
@)

Fixed point (INT)
Floating point (FP)
Block floating point (BFP)

e Quantization methods

NYU SAI LAB

@)
@)
@)

Taxonomy of Quantization
Learnable adaptive quantization scheme
Quantization for LLM



Post Training Quantization

e Several Methods have been proposed to efficient post-training
quantization.

e Given the large size of the modern LLM, it is beneficial to applied the
quantization on the model directly without the need of finetuning.

NYU SAI LAB
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Case Study: CLIP in Llava

Text
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Visual input example, Tricky Question:
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If there are factual errors in the questions, point it out;
if not, proceed answering the question.
What's happening in the desert?
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Sorry, I cannot answer that question as there is no
context about which desert you are referring to.

In the image, there is a city skyline with buildings and
a beach with people enjoying the sunset. The scene is
set in a desert, which is unusual for a beach setting.

There are no deserts in the image. The image features
a beach with palm trees, a city skyline, and a large
body of water.

NYU 8 AI L AB Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2024).




CLIP Architecture
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on machine learning. PMLR, 2021.
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference
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Types of Outlier

e Massive Activation:
o For an activation matrix A, an massive activation is an element Aij within it
that satisfies:
o Aij>nXmean(|A|) y6-Layer3
o Aij>y
o n=300, y=50
e Channelwise Outlier:
o mean(Ai) > nXstd(A) +mean(|A|)
o std(Ai)<p
o n=3, p=0.6

NYU SAI LAB




Outlier Study: CLIP Activations

3D activation within layer 12
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Outlier Study: CLIP Activations

Layer 1 Layer 2 Layer 3 Layer 4

e 3D plots of x2 across
layers.
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Outlier Study: CLIP Activations

Layer 1 Layer 2 Layer 3 Layer 4

Activ,

e 3D plots of x8 across
layers.
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Outlier Study: CLIP Weights

g-weight Layerl

e Wjgq across CLIP layers.
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Outlier Study: CLIP Weights

e Wk across CLIP layers.
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Outlier Study: CLIP Weights

016 016
o1y 014 g
a2 0102
PY om0 010
. 008 g 008 £
006 5 006
0.04 B 008 =
002 002
000 000
200 200
100 & 400 100 w0
aut gy, 600 200 500 2 a g 600 200 gy, 600
“hanny g0 Hanng, 800 hang 800 hanpy a0
v ) v o » o Y o
1000 1000 1000 1000
- v-weight Layerll v-weight Layerl2 v-weight Layerl3 v-weight Layerl4
o
=
3 |
o i
N I s o0s
3 ot s0s & oo g
S 008 & acs £ H
] L oty
006 5 003 & 003
008 £ o ¥ ooz
002 001 o001
000 000 000
1000
200 200
o 100 0
gy 00 o, 600
Chame 500 et 00
& 1000 ¥

400 w00
°"£Ma,.6[m 800 S D“!('lanmn 800

"l & el 1000 ’ 1000

v-weight Layer20 v-weight Layer21 v-weight Layer23

v-weight Layerl9

| |
004 £ 004 £
003 ® i
02 £ 002 £

1000

o

1000

NYU SAI LAB




Outlier Study: LLaMA Activations

LLaMA2-13B

NYU SAI LAB

Sun, Mingjie, et a. |V|aSS|v/e'acnvauons Iin 1arge language models." arXiv preprint arXiv:2402.17762 (2024).
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Outlier Study: LLaMA Weights

Layer 0 Weights

Attention Q Attention K Attention V Attention O
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Outlier Smoothing

7

@ Outlier | ® Post-training |
Smoothing || termediate Quantization
LLM 8.5 3 [0.2] 1 9 (3o 1 Output

LLM[:> J—)J \—> 2 l.2:4.6 - g : l: == LLM
k M w ) L|a.1|—1 io.a|1.4| [s |—1.| 1)1 t

e \When performing post-training quantization on a LLM, it's common to include a
step of outlier smoothing prior to the quantization process.
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