
Lecture 05: 
Quantization Strategies for 

Efficient DNN Implementation



2

Notes
● Please send email to efficientaiaccelerator@gmail.com
● Lab1 has been released.
● Start considering the project topic, teaming.
● In-course quiz today, covering materials of DNN pruning.



3

Recap
● Why pruning?

○ Reduce running cost
○ Reduce storage 

● General pruning techniques
● Transformer pruning
● Large model pruning



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



6

Fixed-Point Arithmetic (INT)

● Hyperparameter associated with the fixed-point format:
○ Clipping range (-L, L): usually symmetrical around 0
○ Bitwidth (b)

● Quantization with Fixed-point format is called Fixed point quantization or 
INT quantization.

3
4-bit Fixed 

Point (INT4)

2 0
Fixed Point Formats

e=0, m=3

7 6 0

e=0, m=7

8-bit Fixed 
Point (INT8)



7

Fixed-Point Format (Symmetrical)
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

 ● Have a uniform representation power within the clipping range.
● All the computations can be performed using 

x

Q(x)



8

Fixed-Point Format (Symmetrical)
● Have a uniform representation power within the clipping range.
● All the computations can be performed using 

0 L-L 0 L-L
s=2L/(2b-2) s=2L/(2b-1)

● With s=2L/(2b-2), zero can be represented using quantized number

x

Q(x)

x

Q(x)



9

Example
● X = [1.1, 2.4, -0.3, 0.8],  bitwidth = 3, L = 2

● How to convert a number x to INT representation?
○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

s = 4/6 = 2/3  
xc = [1.1, 2, -0.3, 0.8]

xint = [2, 3, 0, 1]
Xq = [1.33, 2.0, 0.0, 0.67]

b=3, L=2  



10

Computation with Fixed-Point Format
● Addition/Subtraction: 
● Multiplication:
● Division: 

If the scales are the same

Fixed-point adder

Fixed-point multiplier



11

Computation with Fixed-Point Format
● Addition/Subtraction: Hard to compute 
● Multiplication:
● Division: 

If the scales are not the 
same

Fixed-point adder

Fixed-point multiplier



12

Computation with Fixed-Point Format
● If we try to compute the dot product between X and Y:

All elements within the tensors are quantized using the same 
scale, but the scale across the tensors can be different✖Xq,1 Xq,2

yq,2

yq,1

X, Y 

quantized

Xint, Yint 

IN
T M

A
C

quantized

Zint Z X, Y 

FP M
A

C

Z 



13

Computation with Fixed-Point Format
● INT can be applied to a block of numbers, with the block size defined in a 

customizable manner.

1 2

10 11

1.1 2.4

10.5 11.8

Per tensor 
quantization

Row-wise 
quantization
(low error)

Column-wise 
quantization
(high error)

1.1 2.4

10.5 11.8

1.1 2.4

10.5 11.8

● However, a higher quantization granularity will also incur a conversion overhead.



14

Computation with Fixed-Point Format

0 1-11-1 Binary quantization Ternary quantization

● Binary and Ternary neural networks are both multiplication-free DNN.



15

Fixed Point Format (Unsymmetrical)
● How to convert a number to INT8 representation?

○ Set the clipping range: (Lmin, Lmax), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1

LmaxLmin



16

Example
● X = [1.1, 2.4, -0.3, 0.8],  bitwidth = 3, L = 2

s = 0.357  
b=3, Lmax=2, Lmin=-0.5   

● How to convert a number to INT8 representation?
○ Set the clipping range: (Lmin, Lmax), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1
Xc = [1.1, 2, -0.3, 0.8]

Xint = [4,7,1,4]
Xq = [0.93, 2.0, -0.14, 0.93]



17

Computation with Fixed-Point Format

● Addition/Subtraction: 

● Multiplication (needs additional computation):

● Division: hard to implement



18

Floating-Point Arithmetic

31
IEEE 754 

32-bit (FP32)

30 22 0 15 14 9 0

e=5, m=10e=8, m=23

IEEE 754 
16-bit (FP16)

Sign field Exponent (e) Mantissa (m)

● The floating-point number has three fields:
○ Sign (s)
○ Exponent (e)
○ Mantissa (m)



19

Floating-Point Arithmetic

Overton, Michael L. "Floating point representation." Unpublished note (1996).

● Every real number can be converted in the following format:

● For example:
○ 5.5 = (-1)0 

✕ 2129-127 
✕ (1.011)2 

○ -71 = (-1)1 
✕ 2133-127 

✕ (1.000111)2 
○ 0.34375 = (-1)0 

✕ 2125-127 
✕ (1.011)2 

There typically exists a predefined 
bias: bias = 127 for IEEE 754 FP32.

s = 0, e = 10000001, m = 0110000…0
s = 1, e = 10000101, m = 0001110…0
s = 0, e = 01111101, m = 0110000…0



20

Floating-Point Arithmetic

● IEEE-754 standard: 

● The exponent field is unsigned.
● We need some special representation:

○ A bit stream of all zeros represents 0



21

Floating Point Arithmetic

● Have better representation power for values with small magnitudes.
● How to convert a real number x to FP representation?

x = |x|   s = sign(x)



22

Example

x = -13.24, bias=127 

x = |x|   s = sign(x)

a = 3, e = 130, m = 0.655 

s = (1)2, e = (10000010)2, m = (10100111101011100001000)2  



23

Difference in Representation Power Between 
INT and FP

● FP provides relative precision that scales with magnitude. Small numbers 
near zero have finer granularity, while very large numbers have coarser 
steps.
○ For FP, the as the magnitude getting larger, the granularity will also 

decrease.
○  

● INT provides uniform precision. Each step between representable values is 
exactly the same.

Under the fixed exponent, mantissa 
fills the gap evenly

As exponent increase, the granularity will 
decrease exponentially



24

Computation with FP Representation
● Addition/Subtraction: 

○ Need to align the exponent
011010 + 001111 = 011010 + 011011 = 011101
s1e1 m1 Alignment

● Multiplication/Subtraction: 
○ Sum the exponent, multiply the mantissa

011010    001111✖

s2 e2 m2

s1e1 m1 s2 e2 m2

e =e1+e2

1+m = normalizer(1.m1 x 
1.m2)

● Addition and subtraction is expensive for FP.



25

Customized FP Representation

bfloat16 TensorFloat
15 14-7 6-0

e=8, m=10e=8, m=7

e=5, m=10

IEEE 754 
16-bit (FP16)

HFP8
7 2-0

e=4, m=3

6-3

e=5, m=2

● Numerous customized FP representations have been developed to facilitate 
DNN execution.

● FP can be applied to a block of numbers, with the block size defined in a 
customizable manner.

NVFP4
3 03

e=2, m=1

2-1

7 1-06-21514-10 9-0

18 17-10 9-0



26

Block Floating Point (BFP)

g=4, e=4, m=6

4 3-0
3-0

g=2, e=4, m=4

● BFP formats offer a middle ground between FP and INT formats, by enforcing that a group of 
values share a common exponent while maintaining individual mantissas.

g=16, e=8, m=3

MSFP-12

Sign field Exponent (e) Mantissa (m)

6 5-0

3-0 7-0

32-0



27

Block-Floating Arithmetics (BFP)

● Block floating point (BFP) is a numerical representation method that applies a shared exponent 
to a block of fixed-point values, balancing precision and dynamic range while reducing 
computational complexity compared to full floating-point arithmetic.

● There is no “leading 1”.

m = (b0.b1b2b3...b22)2

BFPFP

110 0 11

1110 01 0010 11

1100 11

0010
11

0 110 Sign
Group exponent
Mantissa



28

Block-Floating Arithmetics (BFP)

● Inner-group operations are performed using fixed-point arithmetic.
● Cross-group operations are performed using floating-point arithmetic.
● Each group exponent also includes a bias, which is shared across all the groups.

110 0 11

1110 01 0010 11

1100 11

0010
11

0 110 Sign
Group exponent
Mantissa

m = (b0.b1b2b3...b22)2

BFPFP



29

Example

5.5
2.625
-3.125
2.75

Find the 
max value

5.5

Find the 
group 

exponential (1.375×22)
2

Converting to 
Binary

(-1)0×22×(1.0110)2 
(-1)0×21×(1.0101)2 
(-1)1×21×(1.1001)2 
(-1)0×21×(1.0110)2 

BFP
Representation

(-1)0×22×(1.0110)2 
(-1)0×22×(0.1010)2 
(-1)1×22×(0.1100)2 
(-1)0×22×(0.1011)2 

10

0
0
1
0

10110
01010
01100
01011

Shift on 
significands

Assume the bias is 0
Sign
Group exponent
Mantissa



30

Logarithm Arithmetics
● A specialized form of integer (INT) quantization
● Utilizes only power-of-two integer values, making hardware multiplication 

more efficient and cost-effective.

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7-8

1 2 4 8-1-2-4-8

● Each INT number can be represented 
by its exponent = log(INT).

● A total of 8 numbers, 3 bits are needed 
to encode the bits.

11 10 01 001 1 1 1 11100100 0000

a = (1100)2 a✖2 = (11000)2 a✖8 = (1100000)2



31

Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



32

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives:

○ Weight quantization, activation quantization
○ Quantization aware training, post training quantization
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



33

Weight Quantization

Weight distribution in ResNet

● The weight distribution follows a 
gaussian-like distribution.

● The outlier will lead to large quantization 
error.

● A good selection on the clip range L is 
critical for accuracy performance.

L L

-m m



34

Weight Quantization

● Large truncation error
● Low quantization error for small values

L L L L

-m m

● Small truncation error
● Large quantization error for small values

● L = 0.9×max(|W|), L = 0.95×max(|W|), 0.9 and 0.95 are 
chosen by experience.



35

Activation Quantization
● Quantization on activation needs to be performed dynamically. This will introduce 

additional compute overhead.
● Also the activation will pass the nonlinear functions, which are usually very 

sensitive to quantization error, so dequantization is required to convert back to FP 
16/32.

INT
Conv

FP2
INT

INT2
FP

Batch
Norm

ReLU INT
Conv

FP2
INT …

Layer l



36

Activation Quantization

(577✕1024)✕
(1024✕1024)

MatMul
Dequantize

Cal_scale
QuantOn 4090 GPU

Projection Layer:
Input: 577x1024

Weight: 4096x1024

● For low-precision quantization, the 
quantization process may cause more 
computation than the computational savings 
achieved by using low-precision quantization.



37

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



38

When to Quantize?
Post-training quantization (PTQ)

Train with full 
precision

Quantize the 
weights

Quantization-aware Training (QAT)

● PTQ has lower computational cost, but accuracy is also lower.
● For the model which is expensive to train (LLM), PTQ is applied to facilitate their 

implementations.

Quantize the 
weight/activation

Resultant model

Until 
convergence

Train the 
current model



39

How to compute           ?

Another Way to Look at Quantization

W

A

✖ Y Z
✖

Q

Original flow Flow with quantization

W’W

A

Y Z
ReLU

ReLU

Y = WA, Z = ReLU(Y)



40

Straight Through Estimator (STE)
● Staircase function has a derivative of 0 at most of the 

values. This will makes the DNN not trainable.
● We instead use STE to estimate the gradient of a 

non-differentiable quantized function in the backward 
pass.

● During the forward pass, apply quantization, 
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems 
30 (2017).



41

Straight Through Estimator (STE)

✖

Q

Forward pass

W’W

A
Y ZReLU

Q
✖

W

A
Y ZReLU

Backward pass

● During the forward pass, apply quantization, for backprop, ignore it.



42

Other Ways to Approximate Quantization

Liu, Zechun, et al. "Bi-real net: Binarizing deep network towards real-network performance." International Journal of 
Computer Vision 128 (2020): 202-219.



43

Pytorch Implementation of Quantization
    def forward(self, x):

        y = F.conv2d(self.w, x)

        return y

    def forward(self, x, b, L):

        self.quantized_w = Q(self.w, b, L)

y = F.conv2d(self.quantized_w, x)

        return y
def Q(w, b, L):

   L = 0.9 * w.abs().max()

   w = torch.clip(w, min=-L, max=L)

   scale = 2L/(2**b-2)  

   wq = (w/scale).round() * scale

   return wq



44

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



45

Granularity of Quantization
● The weight can be quantized with different granularity:

○ Tensor-based quantization
○ Vector-based quantization
○ Group-based quantization

● A higher quantization granularity will lead to a lower quantization error and a 
higher hardware implementation cost.

Tensor-based 
quantization

Vector-based
quantization

Group-based
quantization



46

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



47

Quantization During Training

● The forward propagation is very similar to the inference operation, where the input X is 
multiplied by weight W, generating the output Y.

X Y=W

X: input W: weight filters Y: output



48

Quantization During Training

  XWT
  Y =

X: input W: weight filters Y: output
X: input gradient W: weight gradient Y: output gradient

XT =  Y    W

Weight gradient 
Computation

Data gradient 
Computation



49

Quantization During Training

  X

WT

  Y XT    W

Weight Gradient 
Computation

 Data Gradient 
Computation

Q
(.)

Q(   Y)

Q(WT)

Q(.)

Q
(.)

Q(XT)

Q(.)

  Y

Q(   Y)

● Gradient is much more sensitive to quantization error.



50

DNN Gradient Distribution

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint 
arXiv:2006.08173 (2020).

● DNN gradient is much hard to quantize and very sensitive to quantization error.



51

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



52

Deterministic and Stochastic Quantization

10

a = 0.2

● To quantize a, conventional linear quantization will make 
q(a) = 0. However, this will cause a bias. 

● With stochastic quantization:

● For QAT, the bias will not cause any problem, due to the existence of bias in BN.
● Stochastic quantization is extremely useful when applying quantization to accelerate DNN 

training. 



53

Deterministic and Stochastic Quantization

...

...

Filters

H

W

C

Input Feature 
maps

...
...

...
R

S

C

M filters

* ...

...

Quantized Filters

H

W

C

Input Feature 
maps

...
...

...

R
S

C

M filters

*

...

Output Feature 
maps

E

F

M

BN

β

FP weights Quantized weights



54

Quantization During Training

  X

WT

  Y XT    W

Weight Gradient 
Computation

 Data Gradient 
Computation

S
Q

(.)

Q(   Y)

Q(WT)

SQ(.)

Q(XT)

  Y

Q(   Y)

S
Q

(.)

SQ(.)



55

Clustering-Based Quantization
● Quantization and clustering share 

similarities. In clustering, each value is 
assigned to a centroid, while in 
quantization, each full-precision value 
is mapped to one of the predefined 
quantization levels.

● Clustering is usually used to compress 
the weight matrix and efficient storage, 
but it is hard for accelerating 
computations.

● However, due to the flexibility of 
selecting the centroid, clustering 
usually achieves a better accuracy.



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



57

Learnable Quantization
● Multiple methods have been proposed to learn the quantization 

hyperparameters:
○ PACT
○ QIL
○ Quantization network



58

Learnable Quantization
● How to convert a number to INT8 representation?

○ Set the clipping range: (-Lmin, Lmax), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1



59

Learnable Quantization

Weight distribution in ResNet
l = 0.9×max(|W|), l = 0.95×max(|W|)

L L

-m m

● How to convert a number to INT8 representation?
○ Set the clipping range: (-l, l), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

Can learn by learnt during training?

s = (2l)/(2b-1)
xc = Clip(x, l, -l)

xint = round(xc/s)
xq = sxint



60

Learnable Quantization

L L

-m m

● First we need to apply CLIP function to 
the input x, where the clip function has a 
range of (-l, l).

●

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 
(2018).

● Can we learn l?



61

Learnable Quantization

✖

Q W’W

A

Y ZReLU

l

clipW

l

Wc r(.) W’

1



62

Learnable Quantization

L L

-m m

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint 
arXiv:1805.06085 (2018).

L can be 
learnable



63

Learnable Quantization

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

QIL

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

QN



64

Problem of Quantization

0.1 3  1 3-10.4 0.2 0.4 0.60.2 0 3  1 3-10 0 0 10
Quantization

● The major drawback of quantization is that it does not consider the 
impact of the input when making the quantization decision.

10 0.1  0.3 30.2 4  2 0.4 6.58
✖

10 0.1  0.3 30.2 4  2 0.4 6.58
✖



65

Problem of Quantization

Layer lxl yl

● We use a calibration dataset and 
profile some data xl, yl across each 
layer.

● After that, we use these data to train 
the optimal quantized weights.

For each l



66

 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

L L

-m m

c-L c+L

-m m

0

w = 0.2

……
0.5 1



67

 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

0.50

w = 0.2

1

……
wq = Q(w)

● F(.) is a function which contains learnable 
hyperparameters.

● To achieve this rounding flexibility, we combine a 
learnable function with quantization.

wq = Q(F(w)) 



68

 Quantization Interval Learning (QIL) 
● QIL offers flexibility to round the FP weights.

0

w = 0.2

……

0

w = 0.2

……

 = 0.8

0

……

 = 0.8

Quantize

Mapping

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

● wq = Q(F(w)) are stored for inference after the training process finished. 
● We can not apply this techniques over the activation, due to its large computational overhead.

Mapping function contains some learnable parameters

0.5 1

0.5 1

0.5 1



69

Quantization Networks
● We propose a novel perspective of interpreting and implementing neural network quantization by 

formulating low-bit quantization as a differentiable non-linear function.

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

● n + 1 is the number of quantization intervals
● β is the scale factor of inputs
● si and bi are the scales and biases for the unit step functions

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." Proceedings of the 
IEEE/CVF international conference on computer vision. 2019.



70

Quantization Networks

● We can replace the staircase 
function with a sigmoid function.

T = 1

T = 3T = 5T =10

T =50
● We can progressively increases T 

during the training process. 



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



72

Post Training Quantization
● Several Methods have been proposed to efficient post-training 

quantization.

● Given the large size of the modern LLM, it is beneficial to applied the 
quantization on the model directly without the need of finetuning.



73

Case Study: CLIP in Llava

P
rojection
N

etw
ork

✕24

S
elf-A

ttention

Feedforw
ard

N
etw

ork

CLIP

Embedding

Image

Text

Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2024).
S

elf-A
ttention

Feedforw
ard

N
etw

ork

✕40

Fusion

Concat in token dim



74

CLIP Architecture

Self-Attention

Feedforward
Network

✕2
4

C
LI

P

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference 
on machine learning. PMLR, 2021.



75

Types of Outlier
● Massive Activation:

○ For an activation matrix A, an massive activation is an element Aij within it 
that satisfies:

○ Aij > η✕mean(|A|)
○ Aij > γ
○ η=300, γ=50

● Channelwise Outlier:
○ mean(Ai) > η✕std(A) +mean(|A|)
○ std(Ai) < β
○ η=3, β=0.6



76

Outlier Study: CLIP Activations
● 3D activation within layer 12

X1   X2   X3   X4   

X5   X8   X9   y1   

y2   y3   y4   y5   



77

Outlier Study: CLIP Activations
● 3D plots of x2 across 

layers.

● x2 exhibits channel wise 
outlier

Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  



78

Outlier Study: CLIP Activations
Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  

● 3D plots of x8 across 
layers.

● x8 exhibits channel wise 
outlier



79

Outlier Study: CLIP Weights

● Wq across CLIP layers.



80

Outlier Study: CLIP Weights

● Wk across CLIP layers.



81

Outlier Study: CLIP Weights

● Wv across CLIP layers.



82

Outlier Study: LLaMA Activations

Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024).

x1

x2



83

Outlier Study: LLaMA Weights



84

Outlier Smoothing

LLM
Intermediate

LLM

Post-training 
Quantization

Outlier
Smoothing

Output
LLM

21

● When performing post-training quantization on a LLM, it's common to include a 
step of outlier smoothing prior to the quantization process. 


